學習方法,并沒有統(tǒng)一的規(guī)定,因個人條件不同,時代不同,環(huán)境不同,選取的方法也不同。以下是小編精心收集整理的小學數(shù)學學習方法總結(jié),下面小編就和大家分享,來欣賞一下吧。
養(yǎng)成不懂就問的習慣
有些題目孩子不懂,家長要耐心地解釋題目的意思,鼓勵孩子不懂就問。但是家長不要直接把答案告訴他,我想只要你把題目解釋清楚,孩子是能夠自己解答的。
我發(fā)現(xiàn)成績不夠理想的孩子,往往依賴性比較強,不愿獨立思考,課堂上要么等著老師講解,要么轉(zhuǎn)來轉(zhuǎn)去指望其他同學。這些同學在家里做作業(yè)也肯定很拖拉。家長要注意正確引導(dǎo)。
二年級學生已入學一年,有了一定的學習習慣的基礎(chǔ),但由于年齡特點,在數(shù)學學習上容易存在以下幾個方面的不足:
一、注意力方面:
學生年齡小,有意識的注意力差,持久性也不長,一節(jié)課40分鐘,很難堅持到底,往往聽了一半就思想就開起了小差,或東張西望,隨意說話,或小動作不停。
二、聽講方面:
不能傾聽是許多低年級學生的通病。但學生的自我表現(xiàn)欲較強,往往一句話還沒有來得及聽完整,一知半解時便搶著回答,聽不進老師的建議和其他同學的發(fā)言。
三、看和寫的方面:
粗心馬虎,經(jīng)常把題看不完整、把數(shù)左右看顛倒或上下看錯行、把運算符號看錯,或把圖看不全面。寫的時候精力不夠集中,算對的卻抄錯,書寫不認真,書面不整潔,寫完不檢查。
四、想的方面:
二年級學生思維發(fā)展還不全面,沒有系統(tǒng)性,以直觀形象思維為主,遇到需要邏輯思維或考察空間想象能力的問題,思維跟不上,腦子里轉(zhuǎn)不過來彎,便會不知所措,應(yīng)付塞責。
五、語言方面:
由于生活經(jīng)驗和積累的詞匯少,語言單調(diào)、直白,即使明白了算理,口頭表達時也常常說不清、道不明。
第一,重視聽講。在課堂上,老師講授的一般都是新的知識內(nèi)容,所以要緊跟著老師的思路走,積極的開展自己的思維,看看老師講的解題思路與自己所想的有什么不同,通過思考進一步的去提高自己的數(shù)學能力。
第二,及時復(fù)習。復(fù)習的時候要把老師當天講的內(nèi)容都消化掉,做到不堆積問題,把老師在課上講的知識點都去回顧一遍,熟練掌握公式的推理過程,盡量通過自己的記憶去回顧,實在搞不懂就去翻下書。
第三,多做題。學好數(shù)學就必須多做題,這是為了掌握各種不同題型的解題思路,剛開始可以不用那么著急,可以從簡單的入手,主要以課本的習題為主,如果課本里的習題能解答好,就是把基礎(chǔ)打扎實。
基礎(chǔ)知識牢固了,就可以去找一些課外的習題,或者試題來練練手,多幫助自己開拓思維,尋找新思路,提高對解決問題的分析能力,題目做的多了,多多少少就能知道一些解題規(guī)律,也就能總結(jié)出一套自己的解題方法。
在小學數(shù)學解題方法中,運用概念、判斷、推理來反映現(xiàn)實的思維過程,叫抽象思維,也叫邏輯思維。
抽象思維又分為:形式思維和辯證思維??陀^現(xiàn)實有其相對穩(wěn)定的一面,我們就可以采用形式思維的方式;客觀存在也有其不斷發(fā)展變化的一面,我們可以采用辯證思維的方式。形式思維是辯證思維的基礎(chǔ)。
形式思維能力:分析、綜合、比較、抽象、概括、判斷、推理。
辯證思維能力:聯(lián)系、發(fā)展變化、對立統(tǒng)一律、質(zhì)量互變律、否定之否定律。
小學數(shù)學要培養(yǎng)學生初步的抽象思維能力,重點突出在:
(1)思維品質(zhì)上,應(yīng)該具備思維的敏捷性、靈活性、聯(lián)系性和創(chuàng)造性。
(2)思維方法上,應(yīng)該學會有條有理,有根有據(jù)地思考。
(3)思維要求上,思路清晰,因果分明,言必有據(jù),推理嚴密。
(4)思維訓練上,應(yīng)該要求:正確地運用概念,恰當?shù)叵屡袛?,合乎邏輯地推理?/p>
1、對照法
如何正確地理解和運用數(shù)學概念?小學數(shù)學常用的方法就是對照法。根據(jù)數(shù)學題意,對照概念、性質(zhì)、定律、法則、公式、名詞、術(shù)語的含義和實質(zhì),依靠對數(shù)學知識的理解、記憶、辨識、再現(xiàn)、遷移來解題的方法叫做對照法。
這個方法的思維意義就在于,訓練學生對數(shù)學知識的正確理解、牢固記憶、準確辨識。
例1:三個連續(xù)自然數(shù)的和是18,則這三個自然數(shù)從小到大分別是多少?
對照自然數(shù)的概念和連續(xù)自然數(shù)的性質(zhì)可以知道:三個連續(xù)自然數(shù)和的平均數(shù)就是這三個連續(xù)自然數(shù)的中間那個數(shù)。
例2:判斷題:能被2除盡的數(shù)一定是偶數(shù)。
這里要對照“除盡”和“偶數(shù)”這兩個數(shù)學概念。只有這兩個概念全理解了,才能做出正確判斷。
2、公式法
運用定律、公式、規(guī)則、法則來解決問題的方法。它體現(xiàn)的是由一般到特殊的演繹思維。公式法簡便、有效,也是小學生學習數(shù)學必須學會和掌握的一種方法。但一定要讓學生對公式、定律、規(guī)則、法則有一個正確而深刻的理解,并能準確運用。
例3:計算59×37+12×59+59
59×37+12×59+59
=59×(37+12+1)…………運用乘法分配律
=59×50…………運用加法計算法則
=(60-1)×50…………運用數(shù)的組成規(guī)則
=60×50-1×50…………運用乘法分配律
=3000-50…………運用乘法計算法則
=2950…………運用減法計算法則
3、比較法
通過對比數(shù)學條件及問題的異同點,研究產(chǎn)生異同點的原因,從而發(fā)現(xiàn)解決問題的方法,叫比較法。
比較法要注意:
(1)找相同點必找相異點,找相異點必找相同點,不可或缺,也就是說,比較要完整。
(2)找聯(lián)系與區(qū)別,這是比較的實質(zhì)。
(3)必須在同一種關(guān)系下(同一種標準)進行比較,這是“比較”的基本條件。
(4)要抓住主要內(nèi)容進行比較,盡量少用“窮舉法”進行比較,那樣會使重點不突出。
(5)因為數(shù)學的嚴密性,決定了比較必須要精細,往往一個字,一個符號就決定了比較結(jié)論的對或錯。
例4:填空:0.75的_位是(),這個數(shù)小數(shù)部分的_位是();十分位的數(shù)4與十位上的數(shù)4相比,它們的()相同,()不同,前者比后者小了()。
這道題的意圖就是要對“一個數(shù)的_位和小數(shù)部分的_位的區(qū)別”,還有“數(shù)位和數(shù)值”的區(qū)別等。
例5:六年級同學種一批樹,如果每人種5棵,則剩下75棵樹沒有種;如果每人種7棵,則缺少15棵樹苗。六年級有多少學生?
這是兩種方案的比較。相同點是:六年級人數(shù)不變;相異點是:兩種方案中的條件不一樣。
找聯(lián)系:每人種樹棵數(shù)變化了,種樹的總棵數(shù)也發(fā)生了變化。
找解決思路(方法):每人多種7-5=2(棵),那么,全班就多種了75+15=90(棵),全班人數(shù)為90÷2=45(人)。
4、分類法
根據(jù)事物的共同點和差異點將事物區(qū)分為不同種類的方法,叫做分類法。分類是以比較為基礎(chǔ)的。依據(jù)事物之間的共同點將它們合為較大的類,又依據(jù)差異點將較大的類再分為較小的類。
分類即要注意大類與小類之間的不同層次,又要做到大類之中的各小類不重復(fù)、不遺漏、不交叉。
例6:自然數(shù)按約數(shù)的個數(shù)來分,可分成幾類?
答:可分為三類。(1)只有一個約數(shù)的數(shù),它是一個單位數(shù),只有一個數(shù)1;(2)有兩個約數(shù)的,也叫質(zhì)數(shù),有無數(shù)個;(3)有三個約數(shù)的,也叫合數(shù),也有無數(shù)個。
5、分析法
把整體分解為部分,把復(fù)雜的事物分解為各個部分或要素,并對這些部分或要素進行研究、推導(dǎo)的一種思維方法叫做分析法。
依據(jù):總體都是由部分構(gòu)成的。
思路:為了更好地研究和解決總體,先把整體的各部分或要素割裂開來,再分別對照要求,從而理順解決問題的思路。
也就是從求解的問題出發(fā),正確選擇所需要的兩個條件,依次推導(dǎo),一直到問題得到解決為止,這種解題模式是“由果溯因”。分析法也叫逆推法。常用“枝形圖”進行圖解思路。
例7:玩具廠計劃每天生產(chǎn)200件玩具,已經(jīng)生產(chǎn)了6天,共生產(chǎn)1260件。問平均每天超過計劃多少件?
思路:要求平均每天超過計劃多少件,必須知道:計劃每天生產(chǎn)多少件和實際每天生產(chǎn)多少件。計劃每天生產(chǎn)多少件已知,實際每天生產(chǎn)多少件,題中沒有告訴,還得求出來。要求實際每天生產(chǎn)多少件玩具,必須知道:實際生產(chǎn)多少天,和實際生產(chǎn)多少件,這兩個條件題中都已知。
6、綜合法
把對象的各個部分或各個方面或各個要素聯(lián)結(jié)起來,并組合成一個有機的整體來研究、推導(dǎo)和一種思維方法叫做綜合法。
用綜合法解數(shù)學題時,通常把各個題知看作是部分(或要素),經(jīng)過對各部分(或要素)相互之間內(nèi)在聯(lián)系一層層分析,逐步推導(dǎo)到題目要求,所以,綜合法的解題模式是執(zhí)因?qū)Ч步许樛品?。這種方法適用于已知條件較少,數(shù)量關(guān)系比較簡單的數(shù)學題。
例8:兩個質(zhì)數(shù),它們的差是小于30的合數(shù),它們的和即是11的倍數(shù)又是小于50的偶數(shù)。寫出適合上面條件的各組數(shù)。
思路:11的倍數(shù)同時小于50的偶數(shù)有22和44。
兩個數(shù)都是質(zhì)數(shù),而和是偶數(shù),顯然這兩個質(zhì)數(shù)中沒有2。
和是22的兩個質(zhì)數(shù)有:3和19,5和17。它們的差都是小于30的合數(shù)嗎?
和是44的兩個質(zhì)數(shù)有:3和41,7和37,13和31。它們的差是小于30的合數(shù)嗎?
這就是綜合法的思路。
7、方程法
用字母表示未知數(shù),并根據(jù)等量關(guān)系列出含有字母的表達式(等式)。列方程是一個抽象概括的過程,解方程是一個演繹推導(dǎo)的過程。方程法_的特點是把未知數(shù)等同于已知數(shù)看待,參與列式、運算,克服了算術(shù)法必須避開求知數(shù)來列式的不足。有利于由已知向未知的轉(zhuǎn)化,從而提高了解題的效率和正確率。
例9:一個數(shù)擴大3倍后再增加100,然后縮小2倍后再減去36,得50。求這個數(shù)。
例10:一桶油,次用去40%,第二次比次多用10千克,還剩余6千克。這桶油重多少千克?
這兩題用方程解就比較容易。
8、參數(shù)法
用只參與列式、運算而不需要解出的字母或數(shù)表示有關(guān)數(shù)量,并根據(jù)題意列出算式的一種方法叫做參數(shù)法。參數(shù)又叫輔助未知數(shù),也稱中間變量。參數(shù)法是方程法延伸、拓展的產(chǎn)物。
例11:汽車爬山,上山時平均每小時行15千米,下山時平均每小時行駛10千米,問汽車的平均速度是每小時多少千米?
上下山的平均速度不能用上下山的速度和除以2。而應(yīng)該用上下山的路程÷2。
例12:一項工作,甲單獨做要4天完成,乙單獨做要5天完成。兩人合做要多少天完成?
其實,把總工作量看作“1”,這個“1”就是參數(shù),如果把總工作量看作“2、3、4……”都可以,只不過看作“1”運算_便。
9、排除法
排除對立的結(jié)果叫做排除法。
排除法的邏輯原理是:任何事物都有其對立面,在有正確與錯誤的多種結(jié)果中,一切錯誤的結(jié)果都排除了,剩余的只能是正確的結(jié)果。這種方法也叫淘汰法、篩選法或反證法。這是一種不可缺少的形式思維方法。
例13:為什么說除2外,所有質(zhì)數(shù)都是奇數(shù)?
這就要用反證法:比2大的所有自然數(shù)不是質(zhì)數(shù)就是合數(shù)。假設(shè):比2大的質(zhì)數(shù)有偶數(shù),那么,這個偶數(shù)一定能被2整除,也就是說它一定有約數(shù)2。一個數(shù)的約數(shù)除了1和它本身外,還有別的約數(shù)(約數(shù)2),這個數(shù)一定是合數(shù)而不是質(zhì)數(shù)。這和原來假定是質(zhì)數(shù)對立(矛盾)。所以,原來假設(shè)錯誤。
例14:判斷題:(1)同一平面上兩條直線不平行,就一定相交。(錯)
(2)分數(shù)的分子和分母同乘以或同除以一個相同的數(shù),分數(shù)大小不變。(錯)
10、特例法
對于涉及一般性結(jié)論的題目,通過取特殊值或畫特殊圖或定特殊位置等特例來解題的方法叫做特例法。特例法的邏輯原理是:事物的一般性存在于特殊性之中。
例15:大圓半徑是小圓半徑的2倍,大圓周長是小圓周長的()倍,大圓面積是小圓面積的()倍。
可以取小圓半徑為1,那么大圓半徑就是2。計算一下,就能得出正確結(jié)果。
例16:正方形的面積和邊長成正比例嗎?
如果正方形的邊長為a,面積為s。那么,s:a=a(比值不定)
所以,正方形的面積和邊長不成正比例。
11、化歸法
通過某種轉(zhuǎn)化過程,把問題歸結(jié)到一類典型問題來解題的方法叫做化歸法?;瘹w是知識遷移的重要途徑,也是擴展、深化認知的首要步驟?;瘹w法的邏輯原理是,事物之間是普遍聯(lián)系的?;瘹w法是一種常用的辯證思維方法。
例17:某制藥廠生產(chǎn)一批防“非典”藥,原計劃25人14天完成,由于急需,要提前4天完成,需要增加多少人?
這就需要在考慮問題時,把“總工作日”化歸為“總工作量”。
例18:超市運來馬鈴薯、西紅柿、豇豆三種蔬菜,馬鈴薯占25%,西紅柿和豇豆的重量比是4:5,已知豇豆比馬鈴薯多36千克,超市運來西紅柿多少千克?
需要把“西紅柿和豇豆的重量比4:5”化歸為“各占總重量的百分之幾”,也就是把比例應(yīng)用題化歸為分數(shù)應(yīng)用題。
01、加強整數(shù)和小數(shù)計算練習
計算能力要過關(guān)。四年級整數(shù)計算和小數(shù)計算必須非常熟練,保證準確率和速度,不然到了五年級就要重點學習分數(shù),整數(shù)還不夠熟練,到時面臨的壓力會更大。建議每天堅持就5道計算題,提高做題速度和準確率。
02、培養(yǎng)孩子良好的學習習慣
四年級是學習習慣養(yǎng)成的好時間,及時養(yǎng)成好的習慣更有利于后期的學習。
具體包括:
1.課前做好預(yù)習,課后及時復(fù)習。課前預(yù)習,了解所要講的知識點,帶著問題來聽課效果會更好。所有的知識點是不可能在有限的課堂時間去完全掌握住的,家長要督促孩子做好課后復(fù)習,及時鞏固所學知識點。
2.規(guī)范孩子的書寫。隨著應(yīng)用題的增多,一定要規(guī)范孩子的書寫,對步驟過程要到位,對于行程要養(yǎng)成畫圖的習慣,數(shù)論要思路嚴謹,書寫規(guī)范。
3.養(yǎng)成獨立思考和勇于思考的習慣。孩子現(xiàn)在最欠缺的就是獨立思考,依賴性較強,為難情緒較重,遇到問題就退縮,這時要多鼓勵孩子自己思考,養(yǎng)成愛思考的習慣。
03、在寒假開始適當?shù)淖鲆恍v年杯賽試題
寒假開始安排時間做一些歷年的杯賽真題,加強綜合訓練,為春季沖刺各種杯賽做準備。
04、學習是需要持之以恒的
對于新知識在掌握基本概念和思路的情況下要想做到舉一反三,離不了練習,適當?shù)木毩暡拍馨阎R點得到鞏固,常和家長說學習一定要堅持,可以每天練習一到兩道,根據(jù)時間合理安排保證不間斷的練習。
培養(yǎng)下面兩個好的數(shù)學學習習慣。
一、認真完成家庭作業(yè)的習慣
根據(jù)德國心理學家艾賓浩斯“遺忘曲線”的原理,人有在學習新知識后及時練習便不容易忘掉,如果不及時練習,就很容易遺忘的記憶規(guī)律。因此,鞏固當天所學,認真完成家庭作業(yè)很有必要。對于這點,我要求學生作到:做作業(yè)前,先看課本回顧一下當天所學的知識,然后再做作業(yè),還要做到“三到一檢查一簽字”?!叭健保貉鄣健⑿牡?、手到,眼睛看清題目,心里想著計算,手要把答案寫得正確、美觀;
“一檢查一簽字”:做完作業(yè)后,仔細檢查有沒有出錯,有錯要及時訂正,最后再讓家長簽字。老師及時批改后的錯題,記錄在《錯題集》上,并在作業(yè)本上訂正。
二、快速、正確口算的習慣
數(shù)學上低年級的口算是今后計算的基礎(chǔ),要養(yǎng)成快速、正確口算的習慣,還要在掌握一定的口算方法的基礎(chǔ)上多練習。二年級上期重點練習100以內(nèi)的加、減法和表內(nèi)乘法以及乘加、乘減的計算,100以內(nèi)的加減法難點的是進位加法和退位減法,這需要老師在具體的計算方法上進行分類指導(dǎo),而表內(nèi)乘法以及乘加、乘減的計算就需要學生熟記乘法口訣,教學時,老師要引導(dǎo)學生采用有效的具體的記憶方法有針對性地多記、多練、熟記。課上課下也可以用牌游戲的形式練習連加、連減或乘法,經(jīng)常練習,熟能生巧,口算速度自然就提高了。
也可以借助一些電腦軟件或者app,程序自動出題,自動批改,孩子們還可以PK口算成績,充分調(diào)動了孩子們的學習積極性。
養(yǎng)成好習慣,關(guān)鍵在頭三天,決定在一個月。要想使好習慣持之以恒,剛開學的一個月很關(guān)鍵。作為二年級的數(shù)學老師,開學后我要時時處處提醒自己以身作則,改掉以往易沖動、處理問題簡單、粗暴的壞毛病,時時處處提醒自己按上面的養(yǎng)成教育的要點去悉心培養(yǎng)學生的好的數(shù)學學習習慣。
因為二年級學生的年齡關(guān)系,有時習慣容易反復(fù),所以還要和家長多溝通,教給家長具體的家庭培養(yǎng)方法,讓家長配合老師共同抓,反復(fù)抓,抓反復(fù),才能使習慣成自然。
小學數(shù)學學習方法總結(jié)歸納集錦相關(guān)文章: